Embalse Angostura 2010

Embalse Angostura 2010
lirio de agua

viernes, 22 de mayo de 2015

Algae in the waste-to-fuel cycle


Algae in the waste-to-fuel cycle

May 21, 2015
Corn and algae can work together more efficiently to maximize the energy output of waste streams. Photo: Castalia Group
Corn and algae can work together more efficiently to maximize the energy output of waste streams. Photo: Castalia Group
J dropcapohn O’Renick, in this insightful piece from the Portland (Oregon) Tribune, writes about the problems we create from treating waste streams as garbage to be disposed of instead of assets for energy production. He suggests that, by using integrated biotechnologies to extract energy as efficiently as possible at every step from both our waste streams and agricultural products, we would take a long step closer to ending our dependence on fossil fuels, and we’d do a far better job of cleaning up our wastes.
A farmer grows corn. People eat the corn, its highest, best use. The stover – stalks and leaves – is still full of sugars that can be extracted to make ethanol, instead of increasing food prices and world hunger by putting corn in gas tanks. What is left are yeasts that are mostly protein, and only at this point do you feed any of the corn to livestock. The animal manures are mixed with the correct amounts of other farming wastes (like bedding straw) for most efficient gas production, and biodigested on site.
It is more efficient to burn the gas to cook and make hot water and heat well-insulated buildings with 90-plus percent efficient furnaces than it is to burn it in a 30 percent efficient reciprocating engine to make electricity, so put it to its highest, best, most efficient use – which should be a mantra for everything society does.
The solid remnant from the digester is sterile, stink-free fertilizer. The liquid leftovers, combined with the CO2, (about half the gas produced) could be used to grow algae for biodiesel. Once the oil is extracted from the algae what’s left is carbohydrate and protein – animal feed, fish food, more ethanol, chemical feedstocks – and the algae cleans the water nicely.
People ate the corn. Their wastes, mixed with the right amounts of food waste or shredded lawn and garden debris, go to a biodigester designed to make methane as efficiently as possible, not just to clean sewage. This cleans up three waste streams at once, and produces clean, carbon-neutral, natural natural gas.
If the feedstock could be kept clean of heavy metals, petro products, etc., the solid remnant from the sewage biodigester would be a better soil amendment than when it went in, sterile, and far less odiferous.
If we can’t clean up our sewage, it can be pyrolized – volatiles cooked out to recover liquid hydrocarbons that can be turned into diesel and gasoline (e.g., Fischer-Tropsch process), and the biochar left from that is mostly carbon, so pumping it back down old oil wells would sequester carbon from the atmosphere.
Back on the farm there is still a liquid waste stream, full of nutrients, and about half the gas produced is carbon dioxide. Combine those to grow algae, which nicely cleans up both, and gets another energy cycle out of the CO2 before releasing it back to the atmosphere. Press the algae for oil for biodiesel, which is a far better fuel than ethanol or methanol or hydrogen or biobutanol or any other biofuel being developed – more energy dense, less volatile, easier to store and transport, non-toxic, and easily cleaned up, when spilled, by harmless bacteria.
The right algae grown in clean feedstocks, once pressed for oil, are mostly carbohydrate and protein, vitamins and minerals – animal feed; or extract the carbs to make more ethanol, and the remnant protein is still animal/fish food. But if the right algae are grown in clean feedstocks, the carbs and proteins and vitamins and minerals left once the fats have been removed are a virtual health food and could end world hunger, almost as a byproduct of developing a clean, sustainable transportation fuel.
And all of this essentially from making the most efficient use of a crop of corn. We should be investing in the technologies that make the most sense.

martes, 19 de mayo de 2015

Alstom signs contract for Tilbury biomass plant in the UK

Alstom signs contract for Tilbury biomass plant in the UK

When complete, the 45 MW biomass power station is expected to generate 300 GWh of green electricity every year.

Alstom has signed its third contract this year with Burmeister & Wain Scandinavian Contractor (BWSC), the Danish power plant specialist, for a geared reaction steam turbine at the proposed Tilbury biomass project. The 45MW waste wood power station, to be located on the River Thames near to London, will be built by BWSC andAalborg Energie Technik (AET).

The project specific design, engineering and manufacturing will be done at one of Alstom’s specialist facilities, with support offered by the UK team. The geared reaction steam turbines are preassembled, resulting in a cost-efficient installation and commissioning solution, according to Alstom. What's more, Alstom has optimised the geared reaction steam turbines to maximise the power production, covering renewable and traditional fuel types in addition to industrial applications for process steam.
This latest contract follows two others that Alstom signed with BWSC for 23MW and 50MW turbines for schemes in Widnes and Snetterton earlier this year. “This is our fifth contract with BWSC in the UK -- all for different sized turbines, showing the advantages of our modular offering to ensure we can offer the customer a GRT turbine that suits the specific requirements," said Daniel Wahler, Alstom vice president of Industrial Steam Turbines.

Once commissioned in July 2017, the Tilbury plant is expected to generate 300 GWh of green electricity every year. That's enough energy to supply the power needs of around 80,000 homes. All totalled, the biomas plant is expected to burn around 285,000 tonnes of waste wood a year.

lunes, 18 de mayo de 2015

The Materials Superhighway

The Materials Superhighway

Jim Lane

Materials-Superhighway-051915-10New physical materials — stronger than steel, stiffer than Kevlar, lightweight, conductive, non-toxic, and highly absorbent. 

New liquid fuels and chemicals — strong on performance, price, and emissions.

New edible materials — lighter in unhealthy fats, and delivering more targeted nutritional benefit with fewer side effects from obesity to diabetes.

A revolution in physical materials is occurring — aimed ultimately at displacing and competing with all physical commodities, such as steel, aluminum, chromium, plastics, crops, fuels and chemicals — a process which has already begun and will substantially accelerate in this generation — of which advanced fuels, chemicals, bioproducts and advanced food and feed are the earliest signs.
The Superhighway includes thousands of replacement molecules that are just now making it into the market. These are platform technologies that have been licensed or invested in by virtually every major oil, chemical, steel, and automotive producer.
Materials-Superhighway-051915-7The materials will not only be seen in the world around us, but within us. Wound healing, cell culturing, bone reconstruction, implanting — based in high tensile strength, elasticity, biocompatibility, and technological flexibility
The new physical materials can be stronger than steel, stiffer than Kevlar, lightweight, conductive, non-toxic, and highly absorbent.  The edible materials will be lighter in unhealthy fats, and deliver more targeted nutritional benefit with fewer side effects from obesity to diabetes.
The energy materials will burn more cleanly, will include higher energy density options, reduced emissions such as SOx and NOx, and offer lower costs per mile for transportation.
The headline performance benefits: comparing spider silk, kevlar and steel
Material ToughnessTensile StrengthWeight
Dragline spider silk120,000-160,0001,100-2,9001.18-1.36
Kevlar30,000-50,0002,600-4,1001.44
Steel2,000-6,000300-2,0007.84
What’s material toughness? That’s the “energy required to break a continuous filament, expressed in joules per kilogram (J/kg),” according to Kraig Biocraft Labs.  A .357 caliber bullet has approximately 925 joules of kinetic energy at impact

The technical drivers

Materials-Superhighway-051915-6The Superhighway will be technically powered by a revolution in the cost and speed of genetic sequencing and will be driven by performance.
The most comparable thing we can say about genetic sequencing is that it is a Moore’s Law environment — though it has been substabntially faster than that in the past few years. Billion-dollar sequencing efforts have come down a few hundreds of bucks.
Just this week, we saw news confirming the trend from NatureWorks, who tipped a broad new initiative to support the growth of the additive manufacturing market. The company’s move to support the 3D market comprehensively is based on a three pronged approach. It includes the introduction of an entirely new series of Ingeo grades designed specifically for PLA filament for the 3D printing market; a full suite of technical support services for the additive manufacturing industry’s leading 3D printer and filament producers; and the creation of an in-house print lab, enabling the company to rapidly test new Ingeo formulations and collaborate with printer and filament producers.
NatureWorks’ PLA filament has become a material of first choice in printing, because the material’s low polymer thermal shrinkage allows high resolution printing for part accuracy and avoids warping of parts. Strong polymer fusing performance makes PLA easy to use and enhances performance. A relatively low melt point enables safe lower temperature printing, and very low emissions means no unpleasant odors when printing.
The revolution in materials is ultimately an outcome of the Digital Revolution — but is based in physical materials with lower-cost, lower-weight, higher tensile strength, improved energy density, improved handling, reduced carbon footprint, and diversified sourcing. 3D printing, nanocellulose, aerogels, graphene, and synthetic spider silks are just a handful of the new materials.

Who’s doing what

Materials-Superhighway-051915-8Companies like Amyris, Solazyme, LanzaTech, NatureWorks, Genomatica, Rennovia, Verdezyne, Rivertop Renewables, Green Biologics, Gevo and many others are examples of companies developing products for the Materials Superhighway.
Some will be used for energy, some for food and feed, some for temporary or permanent structures including replacement for plastics and metals. Many will be made from sugars, many from methane.

The when, the how, and the how much

The specifics of when and to what extent the new materials will replace the old — that will depend to a great extent on how much the incumbents are able to respond, onm financial conditions, and on the pace of innovation itself.
Based on experience in other sectors such as petroleum, in the long-term up to 30% shifts in market share and more than 50% price drops could be expected in commodity markets impacted by the Superhighway.

Nanocellulose typifies the trend

Nanocellulose is, according to American Process’s Kim Nelson, an “abundant, sustainable, renewable resource with price stability, based on the huge availability of woody biomass around the globe. Compared to old materials, she notes, it is lightweight, has dimensional stability and high strength, is stable against temperature and salt addition, has high optical transparency, high thermal conductivity and low oxygen permeability. Besides these performance features, it is “compostable, biocompatible, non-toxic, has a reduced carbon footprint, is recyclable and re-usable,” Nelson told delagates to a recent BioEnergy Development Consortium meeting.
Materials-Superhighway-051915-5
In the near-term, the USDA estimates the nanocellulose market asize at 34 million tons per year, Nelson said, noting that nanocellulose is tracking at roughly the same development pace as plastics, and could be expected to reach as much as 200 million tons of demand after 2050.
Materials-Superhighway-051915-4
Innovation is at the heart of the Materials Superhighway, and Nelson’s description of recent advances in American Process’s BioPlus nanocellulose exemplify the trend. Today, nanocellulose has both water-loving and water-repellent varieties — a cost equivalent to conventional polymers and a temperature stability of 50-100 degrees celsius above that of earlier-generation nanocellulose. with BioPlus, American Process has developed a proprietary method of coating nanocellulose particles with hydrophobic lignin that allows incorporation into plastic composites.

“Thank you, plastics. We’ll take it from here.”

This solves — via a low cost, hydrophobic component of biomass known as lignin. This is the tough material that gives strength to cell walls and allows plants and trees to stand up, and is used in BioPlus is the coupling agent with polymers.
Materials-Superhighway-051915-3
Why is that important? Because cellulose is highly polar and hydrophilic, while most plastics (polymers) are non-polar and hydrophobic. That’s been “the Grand Challenge of dispersing nanocellulose in plastics”, Nelson told the BDC meeting in Denver this month.
As American Process puts it, “Thank you, plastics. We’ll take it from here,” — pointing to options such as BioPlus compostable bags — strong, renewable, compostable, made from PLA and BioPlus nanocrystals.

Lightweighting vehicles

Reducing a vehicle’s weight by just 10 percent can improve fuel economy by 6-8 percent. The U.S. DOE’s target vehicle weight reduction is 50% by 2050. According to the DOE the limiting factor in use of lightweight materials in vehicles is “availability of sufficient quantities at affordable cost.”
Materials-Superhighway-051915-3
In the case of nanocellulose, we’ll see development of a sprayable binder resin system containing nanocellulose as a reinforcing phase to replace steel in seating assemblies. There’s an opportunity to achieve commercial application on electric vehicles where every pound reduces the need for battery size, and eases the technical challenges on battery development.

3D printing

Consider the applications of nanocellulose, as a breakout early-stage star on the Materials Superhighway, in 3D Printing. A project has emerged at Oak Ridge National Laboratory to print a golf cart from nano cellulose reinforced polymer using Oak Ridge’s Big Area Manufacturing (BAAM) facility.
In this case the objective is to reinforce 3D printing feedstock with high temperature stability, highly dispersable BioPlus-L to obtain desired mechanical properties for load-bearing parts. The result would be the replacement of high cost, peutroleum–based carbon fiber as reinforcing agent for high temperature polymers like ABS, PLA, Nylon 6,6, and PC with renewable, bio-based nanocellulose.

Over in the world of graphene

The new materials include graphene as well.
Just this week, a team led by ORNL’s Ivan Vlassiouk has overcome one of the barriers to using graphene at a commercial scale. Graphene, a material stronger and stiffer than carbon fiber, has enormous commercial potential but has been impractical to employ on a large scale, with researchers limited to using small flakes of the material.
Materials-Superhighway-051915-1
The team fabricated polymer composites containing 2-inch-by-2-inch sheets of the one-atom thick hexagonally arranged carbon atoms. While most approaches for polymer nanocomposition construction employ tiny flakes of graphene or other carbon nanomaterials that are difficult to disperse in the polymer, Vlassiouk’s team used larger sheets of graphene. This eliminates the flake dispersion and agglomeration problems and allows the material to better conduct electricity with less actual graphene in the polymer.
“Before our work, superb mechanical properties of graphene were shown at a micro scale,” said Vlassiouk, a member of ORNL’s Energy and Transportation Science Division. “We have extended this to a larger scale, which considerably extends the potential applications and market for graphene.”
“In our case, we were able to use chemical vapor deposition to make a nanocomposite laminate that is electrically conductive with graphene loading that is 50 times less compared to current state-of-the-art samples,” Vlassiouk said. This is a key to making the material competitive on the market.
If Vlassiouk and his team can reduce the cost and demonstrate scalability, researchers envision graphene being used in aerospace (structural monitoring, flame-retardants, anti-icing, conductive), the automotive sector (catalysts, wear-resistant coatings), structural applications (self-cleaning coatings, temperature control materials), electronics (displays, printed electronics, thermal management), energy (photovoltaics, filtration, energy storage) and manufacturing (catalysts, barrier coatings, filtration).
Co-authors of the paper, titled “Strong and Electrically Conductive Graphene Based Composite Fibers and Laminates,” are Georgious Polizos, Ryan Cooper, Ilia Ivanov, Jong Kahk Keum, Felix Paulauskas and Panos Datksos of ORNL and Sergei Smirnov of New Mexico State University. The paper is available here.

Synthetic spider silk

What about synthetric spider silk? As KraigLabs points out here, “It has long been known that certain fibers produced in nature possess remarkable mechanical properties in terms of strength, resilience and flexibility. These protein based fibers, exemplified by spider silk, have been the subject of much interest due to spider silk’s incredible toughness.
While scientists have been able to replicate the proteins that are the building blocks of spider silk, two technological barriers that have stymied production (until now) are the incapacity to form these proteins into a spider silk fiber with the desired mechanical characteristics and to do so on a cost-effective basis. In Kraig’s case, they applying their proprietary genetic engineering spider silk technology to an organism which is already one of the most efficient commercial producers of silk: The domesticated silkworm.
Kraig envisions that this genetically engineered spider silk, with its superior mechanical characteristics, will surpass the current generation of high-performance fiber. We believe that spider silk is in some ways so superior to the materials currently available in the marketplace, that an expansion of demand and market opportunities will follow spider silk’s commercial introduction. For example, the ability of this natural silk to absorb in excess of 100,000 joules of kinetic energy makes it the potentially ideal material for structural blast protection. The table below illustrates spider silks incredible toughness and strength yet weighing less.
Elsewhere, we reported in 2013 that Sweden’s  Spiber was looking to be ready ready for mass production of its Qmonos spider silk fiber, sourced from microorganisms, via an operational pilot plant in 2015, with a target production rate of 10 tons a year. In the meantime, Spiber plans a joint venture test plant, working with Kojima Industries.
Other researchers anc companies are working on the new materials. University of the Pacific’s Dr. Craig Vierra demonstrated the procedures in 2012 to harvest and process synthetic spider silk from bacteria.  His research group’s mechanical actuator can reliably stretch fibers to a specified length, mimicking the spider’s natural post-spin.
If scientists could reproduce the mechanical properties of spider spun silk in the laboratory, the material could be used in wide variety of products, ranging from bulletproof vests and aircraft bodies to bridge cables and medical sutures.
As we speculated in 2011 in The Digest, “Could microbes ultimately be taught a whole range of otherwise artificial chemical pathways? Right now, there’s emphasis on using microbes to ferment a basic oil or alcohol, followed by upgrading to a more valuable material through more conventional petrochemical processes. But, what about direct production, through advanced synthetic biology. It’s something that Solazyme works on, and LanzaTech is now embarking on. Where will it take us? Polyethylene fibers spun by micro-spiders? Silk-and-steel hybrids milked continuously from CO-munching e.coli? Microbes that scrub ambient CO2 and eat natural gas, to produce exotic, hyper compressible fuels with energy densities far beyond today’s molecules? Well, we get ahead of ourselves.”
Maybe not so far ahead of ourselves as we suspected at the time. Just this week MIT’s Markus Buehler, CEE research scientist Zhao Qin, Harvard University professor Jennifer Lewis, and former Harvard postdoc Brett Compton unearthed a significant relationship between spider web structure, loading points, and failure mechanisms. “By adjusting the material distribution throughout an entire web, a spider is able to optimize the web’s strength for its anticipated prey,” the researchers found. Science Daily’s Kelsey Damrad observed that “spider webs consisting of uniform thread diameters are better suited to bear force applied at a single point, such as the impact coming from flies hitting webs; a nonuniform diameter can withstand more widespread pressure, such as from wind, rain, or gravity.”
“Spider silk is an impressive and fascinating material,” Lewis said. “But before now, the role of the web architecture had not yet been fully explored.” To investigate the geometric aspects of spider webs through the use of a similar material to silk that can be 3D-printed with uniform mechanical properties was Lewis’ mission.

Beginning in fuels and drop-in chemicals

Initially, we have seen a focus on fuel replacement driven by concerns over carbon attributes, energy security and based in local economic opportunity. The fact that these are large markets dominated by a unpopular cartels is another factor.
Materials-Superhighway-051915-9
These fuel capacity-building efforts have not come accompanied by economy-scale innovation in infrastructure — rather, a handful of companies and governments have pushed hard on flex-fuel vehicles and new blender pumps, and engine technology has embraced electric-fuel hybrids — by adoption is typically limited by fuel blending “saturation points” such as the E10 ethanol limits for most vehicles made between 1995 and 2000, E15 limits for most behicles made 2001 through 2015, and the cost of “old economy” materials in the new electric cars.
On the chemicals side, replacement has been based on a transition from drop-in to novel molecules, primarily over carbon attributes and where opportunities for “same as” or “lower than” prices exist.
But we see the market ultimately transitioning to novel molecules with performance rather than price as the primary driver — a value-driven opportunity rather than cost-driven. Positive carbon attributes will be a secondary driver of adoption.
Over in the EU, a substantial report prepared by E4tech this week looks at the opportunities for making transitional fuels and chemicals from sugars.
E4tech writes:
There are 33 products of particular interest, given the level of industry activity, and as highlighted by US DOE’s “Top10” biochemicals and IEA Bioenergy Task 42 reports – the majority are primary products (first step after sugars), with some key intermediates added (e.g. ethylene.”), and E4tech added 8 additional downstream bio-based polymer pathways (PLA, PET, PBS, PEF, PE, PMMA, and PIP).
E4tech looked closely at the progress from lab to commercial-scale.
“The number of years for a bio-product to reach commercialisation depends heavily on economics (value proposition), drop-in vs. non drop-in (existing demand and infrastructure), conversion technology type, and partnerships (up/downstream supply chain integration). Successfully reaching TRL8 from TRL5 could take around 10 years in a supportive policy environment – but some routes may never be commercialised due to unattractive economics.”
Bio-ethanol is the dominant sugar platform product, followed by much smaller, but still significant, markets for n-butanol, acetic acid and lactic acid. Xylitol, sorbitol and furfural also show significant markets for chemical conversion of sugars, without petrochemical alternatives. The smallest bio-based markets are, as is to be expected, those of the earliest stage products, such as 3-HPA, acrylic acid, isoprene, adipic acid and 5-HMF.

Technical obstacles

Technical obstacles in existing pre-treatment processes include insufficient separation of cellulose and lignin, formation of by-products that inhibit downstream fermentation, high use of chemicals and/or energy, high costs for enzymes (although falling rapidly), and high capital costs for pre-treatment facilities. Opportunities, barriers and mitigations are discussed for each of the different pre-treatment technologies, along with TRL and developer activities.

Research gaps

E4tech identifies five major gaps
1. Lignocellulosic biomass fractionation: Substitution of corrosive chemicals, reducing the inhibition of downstream fermentation, improving hydrolysis efficiency via tailored enzyme development, and introducing processes that are flexible with respect to feedstock
2. Increasing product yields and reduced by-product formation in biological processes, reducing energy demand for product separation, and obtaining higher purity lignocellulosic sugars for use in chemical processes
3. Developing purification processes to obtain high purity monomers, development of novel polymers, scale-up of polymer production
4. Improved process integration along whole technology chain (feedstock to product) incorporating different disciplines, development of consolidated processing approaches, and consideration of interfaces between biological and chemical steps

Non-technical barriers

E4tech identifies four major barriers, “prioritised into their importance to the sugar platform”:
1. Demand side policy
2. Public perception & communication
3. Investment & financing
4. Feedstock
The E4tech report includes ten products in detailed case studies, with a detailed review of the bio-based product (description and pathways), the actors involved in its production (EU and rest of world, discussing plants and partnerships), the value proposition (production economics, greenhouse gas savings and physical properties), and the expected market outlook (expected growth rates, new volumes and markets opened up).

The Bottom Line

Like any Superhighway, safe entry must be controlled via a “dedicated lane” in which new entrants (technologies, countries) safely “reach critical velocity” before entering the main traffic flow.
We see the most affordable, sustainable, available, reliable and affordable entrance point to the Materials Superhighway is advanced fuels and chemicals. Particularly aviation fuels, for now. But we can see mounting evidence that the switch is taking place across an entire universe of materials, and should be seen more properly as a materials superhighway, rather than as a transition strictly within fuels, or chemicals, or nutritionals.

Una cuenca hidrográfica en Costa Rica impulsa avances del proyecto IICA-EUROCLIMA


Una cuenca hidrográfica en Costa Rica impulsa avances del proyecto IICA-EUROCLIMA

Un proyecto intersectorial contra la degradación de tierras captó la atención de un grupo de investigadores latinoamericanos que impulsa la adaptación del agro al cambio climático.
El IICA y el JRC son coejecutores del componente sobre agricultura sostenible, seguridad alimentaria y cambio climático de EUROCLIMA, un programa de la Comisión Europea dirigido a América Latina.

San José, 18 de mayo, 2015 (IICA). Convocados en Costa Rica por el proyecto IICA-EUROCLIMA, expertos en agricultura y ambiente de 16 países de América Latina discutieron y validaron acciones para enfrentar la degradación de tierras, la desertificación y la sequía en la región.

En una gira por la cuenca del río Jesús María, en el Pacífico Central del país, los investigadores y funcionarios internacionales comprobaron la pertinencia de dichas acciones e intercambiaron con productores sus experiencias sobre mitigación y adaptación de la agricultura al cambio climático, en un encuentro promovido por el Instituto Interamericano de Cooperación para la Agricultura (IICA) y el Centro Común de Investigación de la Unión Europea (JRC, por sus siglas en inglés).

El IICA y el JRC son coejecutores del componente sobre agricultura sostenible, seguridad alimentaria y cambio climático de EUROCLIMA, un programa de la Comisión Europea dirigido a América Latina.

Además de la gira al campo, los especialistas de los 16 países también compartieron los avances de cuatro estudios que realizan en el marco del proyecto, los cuales pretenden intensificar la colaboración regional para hacer frente al cambio climático.

Los estudios tratan sobre la vulnerabilidad ante la sequía y la degradación de tierras, la implementación de un sistema de seguimiento y evaluación de las sequías en América Central y Cuba, el desarrollo de un inventario de los sistemas de captación de agua en zonas áridas de América Latina y el efecto de la sequía y la degradación de tierras en la migración de comunidades rurales de esta región.

“Vivimos un momento clave para alcanzar acuerdos vinculantes en materia de mitigación y adaptación de la agricultura al cambio climático, un asunto de gran importancia para América Latina por su vinculación con la seguridad alimentaria y nutricional y la calidad de vida de los habitantes”, expresó el Director de Gestión e Integración Regional del IICA, Diego Montenegro.

“La alianza con el IICA permite explorar opciones en temas que pueden ser de gran provecho para los países latinoamericanos, como por ejemplo la cosecha de agua”, dijo el representante del JRC, Paulo Barbosa.

El proyecto IICA-EUROCLIMA, lanzado en el 2014, cuenta con 1.5 millones de euros. Los países participantes son Argentina, Bolivia, Brasil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Uruguay y Venezuela.

Cuenca en recuperación

En la cuenca del río Jesús María predominan la agricultura y la ganadería como actividades económicas, pero la zona enfrenta problemas de sobreexplotación de tierras, escasez de agua y migración de los jóvenes hacia áreas urbanas.

La Comisión Asesora sobre Degradación de Tierras (CADETI) de Costa Rica coordina en este lugar un proyecto de intervención que procura desde el 2013 aumentar la cobertura boscosa, manejar y conservar el suelo, mejorar la infiltración y la protección del recurso hídrico y mejorar la calidad de vida de las comunidades.

En la iniciativa participan varias entidades públicas, como el Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA), dependencia del Ministerio de Agricultura y Ganadería (MAG); y el Sistema Nacional de Áreas de Conservación (SINAC), órgano del Ministerio de Ambiente y Energía (MINAE).

El carácter intersectorial del proyecto atrajo el interés de los especialistas internacionales, así como el involucramiento de los productores en las acciones de intervención.

La cuenca, de casi 38.000 hectáreas, tiene alturas que van desde los cero hasta los 1.541 metros sobre el nivel del mar. La alta pendiente, combinada con los eventos meteorológicos y la acción humana, ha provocado problemas como la erosión y la pérdida de la fertilidad de los suelos, la reducción del bosque que protege a las fuentes de agua y la sedimentación de los manglares.

Además, como otras zonas del pacífico centroamericano, la cuenca del río Jesús María enfrenta actualmente los cambios en la variabilidad climática vinculados con el fenómeno de El Niño, como altas temperaturas y escasas lluvias, los cuales podrían afectar la producción de granos básicos y la ganadería.

“Las consecuencias de El Niño son previsibles y cada vez más conocidas, son problemas comunes entre varios países, por lo que las soluciones pueden ser compartidas” afirmó Manuel Jiménez, especialista en políticas, comercio y agronegocios del IICA.

De acuerdo con Renato Jiménez, coordinador del proyecto emprendido por CADETI, la degradación de tierras en esta cuenca es la mayor del pacífico costarricense. Además de frenarla, pretenden impulsar el uso de cartografía digital y el desarrollo de indicadores socioeconómicos para la zona, de modo que el proyecto sea modelo para la recuperación de tierras en otras partes de América Latina.

“En América Latina, es necesario que la adaptación de la agricultura al cambio climático sea planificada y no solo reactiva, el proyecto IICA-EUROCLIMA pretende ser un puente entre los países para que intercambien conocimientos y apliquen medidas efectivas que les permitan enfrentar los nuevos desafíos de manera sustentable”, aseguró David Williams, especialista principal del proyecto insignia Resiliencia y gestión integral de riesgos en agricultura del IICA

Una cuenca hidrográfica en Costa Rica impulsa avances del proyecto IICA-EUROCLIMA


Una cuenca hidrográfica en Costa Rica impulsa avances del proyecto IICA-EUROCLIMA

Un proyecto intersectorial contra la degradación de tierras captó la atención de un grupo de investigadores latinoamericanos que impulsa la adaptación del agro al cambio climático.
El IICA y el JRC son coejecutores del componente sobre agricultura sostenible, seguridad alimentaria y cambio climático de EUROCLIMA, un programa de la Comisión Europea dirigido a América Latina.
San José, 18 de mayo, 2015 (IICA). Convocados en Costa Rica por el proyecto IICA-EUROCLIMA, expertos en agricultura y ambiente de 16 países de América Latina discutieron y validaron acciones para enfrentar la degradación de tierras, la desertificación y la sequía en la región.

En una gira por la cuenca del río Jesús María, en el Pacífico Central del país, los investigadores y funcionarios internacionales comprobaron la pertinencia de dichas acciones e intercambiaron con productores sus experiencias sobre mitigación y adaptación de la agricultura al cambio climático, en un encuentro promovido por el Instituto Interamericano de Cooperación para la Agricultura (IICA) y el Centro Común de Investigación de la Unión Europea (JRC, por sus siglas en inglés).

El IICA y el JRC son coejecutores del componente sobre agricultura sostenible, seguridad alimentaria y cambio climático de EUROCLIMA, un programa de la Comisión Europea dirigido a América Latina.

Además de la gira al campo, los especialistas de los 16 países también compartieron los avances de cuatro estudios que realizan en el marco del proyecto, los cuales pretenden intensificar la colaboración regional para hacer frente al cambio climático.

Los estudios tratan sobre la vulnerabilidad ante la sequía y la degradación de tierras, la implementación de un sistema de seguimiento y evaluación de las sequías en América Central y Cuba, el desarrollo de un inventario de los sistemas de captación de agua en zonas áridas de América Latina y el efecto de la sequía y la degradación de tierras en la migración de comunidades rurales de esta región.

“Vivimos un momento clave para alcanzar acuerdos vinculantes en materia de mitigación y adaptación de la agricultura al cambio climático, un asunto de gran importancia para América Latina por su vinculación con la seguridad alimentaria y nutricional y la calidad de vida de los habitantes”, expresó el Director de Gestión e Integración Regional del IICA, Diego Montenegro.

“La alianza con el IICA permite explorar opciones en temas que pueden ser de gran provecho para los países latinoamericanos, como por ejemplo la cosecha de agua”, dijo el representante del JRC, Paulo Barbosa.

El proyecto IICA-EUROCLIMA, lanzado en el 2014, cuenta con 1.5 millones de euros. Los países participantes son Argentina, Bolivia, Brasil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Uruguay y Venezuela.

Cuenca en recuperación

En la cuenca del río Jesús María predominan la agricultura y la ganadería como actividades económicas, pero la zona enfrenta problemas de sobreexplotación de tierras, escasez de agua y migración de los jóvenes hacia áreas urbanas.

La Comisión Asesora sobre Degradación de Tierras (CADETI) de Costa Rica coordina en este lugar un proyecto de intervención que procura desde el 2013 aumentar la cobertura boscosa, manejar y conservar el suelo, mejorar la infiltración y la protección del recurso hídrico y mejorar la calidad de vida de las comunidades.

En la iniciativa participan varias entidades públicas, como el Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria (INTA), dependencia del Ministerio de Agricultura y Ganadería (MAG); y el Sistema Nacional de Áreas de Conservación (SINAC), órgano del Ministerio de Ambiente y Energía (MINAE).

El carácter intersectorial del proyecto atrajo el interés de los especialistas internacionales, así como el involucramiento de los productores en las acciones de intervención.

La cuenca, de casi 38.000 hectáreas, tiene alturas que van desde los cero hasta los 1.541 metros sobre el nivel del mar. La alta pendiente, combinada con los eventos meteorológicos y la acción humana, ha provocado problemas como la erosión y la pérdida de la fertilidad de los suelos, la reducción del bosque que protege a las fuentes de agua y la sedimentación de los manglares.

Además, como otras zonas del pacífico centroamericano, la cuenca del río Jesús María enfrenta actualmente los cambios en la variabilidad climática vinculados con el fenómeno de El Niño, como altas temperaturas y escasas lluvias, los cuales podrían afectar la producción de granos básicos y la ganadería.

“Las consecuencias de El Niño son previsibles y cada vez más conocidas, son problemas comunes entre varios países, por lo que las soluciones pueden ser compartidas” afirmó Manuel Jiménez, especialista en políticas, comercio y agronegocios del IICA.

De acuerdo con Renato Jiménez, coordinador del proyecto emprendido por CADETI, la degradación de tierras en esta cuenca es la mayor del pacífico costarricense. Además de frenarla, pretenden impulsar el uso de cartografía digital y el desarrollo de indicadores socioeconómicos para la zona, de modo que el proyecto sea modelo para la recuperación de tierras en otras partes de América Latina.

“En América Latina, es necesario que la adaptación de la agricultura al cambio climático sea planificada y no solo reactiva, el proyecto IICA-EUROCLIMA pretende ser un puente entre los países para que intercambien conocimientos y apliquen medidas efectivas que les permitan enfrentar los nuevos desafíos de manera sustentable”, aseguró David Williams, especialista principal del proyecto insignia Resiliencia y gestión integral de riesgos en agricultura del IICA.

sábado, 16 de mayo de 2015

Allma introduces "Liquid Chlorella"

Allma introduces “liquid Chlorella”

Allma’s new liquid Chlorella has been developed for use in a wide range of applications, including beverages, dairy products and dietary supplements.
Allma’s new liquid Chlorella has been developed for use in a wide range of applications, including beverages, dairy products and dietary supplements.
Allma Microalgae has unveiled a prototype concentrated “liquid Chlorella” that offers the natural nutritional power of Chlorella vulgaris in a format that’s easy for food and beverage manufacturers to use.
The new aqueous extract includes high levels of some of the water-based nutrients from Allma’s sun-grown Chlorella, including essential amino acids, Vitamin A, B vitamins, iron, calcium, chlorophyll, lutein and zeaxanthin; but without the lipophilic oil-based nutrients such as Omega 3 and 6. As a result it offers higher solubility than whole Chlorella powder and a significant reduction in the marine taste sometimes associated with microalgae ingredients.
Portugal-based Allma believes the liquid Chlorella concentrate will prove a success with food and beverage companies seeking natural and vegetarian sources to fortify and enrich their products. Over the coming months, the company intends to optimize the extract to suit specific applications and tailor it to maximize levels of specific nutrients as required.
Allma’s new liquid Chlorella has been developed for use in a wide range of applications, including beverages, dairy products and dietary supplements. “This is the next generation of Chlorella ingredients,” said Sofia Mendonça, Business Development Manager at Allma. “It is a soluble liquid Chlorella that has been developed with the food and beverage industry in mind.”
Allma’s Chlorella is grown at the state-of-the-art Algafarm production facility in Leiria, 100km north of Lisbon, Portugal. The Chlorella is cultivated in water and grows naturally through photosynthesis in transparent tubes exposed to sunlight. After reaching an optimal biochemical profile, Allma’s Chlorella biomass is pasteurized and spray dried gently to preserve its rich nutrient content.
Allma is a joint-venture collaboration between A4F, a Portuguese biotechnology company specializing in the design, construction and operation of large-scale algae production sites, and Secil, one of Portugal’s largest cement companies.